A review on Mathematical modeling for Rotary Desiccant Dehumidifier

  • Deep Lalkiya
  • Kiran Bhabhor
  • B.D. Jani
Keywords: Desiccant wheel, Dehumidification,Numerical Analysis, Mathematical modeling


Desiccant cooling is an environment friendly alternative system against conventional vapor compression system. In this system Desiccant wheel is a heart in which dehumidification takes place by means of Desiccant hygroscopic substance.  Appropriate design of Desiccant wheel is necessary to fulfill the requirement of this system to make it efficient. This paper shows a review of different mathematical modeling for prognosticating the performance of Desiccant wheel by considering Convective Energy and Mass transfer and some parameters like Humidity Ratio, Temperature, Channel geometry etc. Comparative analysis with Result and some issues is discussed in this paper.


Chung, J. D. (2017). Modeling and Analysis of Desiccant Wheel. In Desiccant Heating, Ventilating, and Air-Conditioning Systems (pp. 11-62). Springer, Singapore
Narayanan, R., Saman, W. Y., White, S. D., & Goldsworthy, M. (2011). Comparative study of different desiccant wheel designs. Applied Thermal Engineering, 31(10), 1613-1620.
Golubovic, M. N., Hettiarachchi, H. M., & Worek, W. M. (2007). Evaluation of rotary dehumidifier performance with and without heated purge. International communications in heat and mass transfer, 34(7), 785-795
Golubovic, M. N., & Worek, W. M. (2004). Influence of elevated pressure on sorption in desiccant wheels. Numerical Heat Transfer, Part A: Applications, 45(9), 869-886.
Ge, T. S., Ziegler, F., & Wang, R. Z. (2010). A mathematical model for predicting the performance of a compound desiccant wheel (A model of compound desiccant wheel). Applied Thermal Engineering, 30(8-9), 1005-1015
Stabat, P., & Marchio, D. (2008). Heat-and-mass transfers modelled for rotary desiccant dehumidifiers. Applied Energy, 85(2-3), 128-142.
Chung, J. D., & Lee, D. Y. (2009). Effect of desiccant isotherm on the performance of desiccant wheel. International journal of Refrigeration, 32(4), 720-726.
Harshe, Y. M., Utikar, R. P., Ranade, V. V., & Pahwa, D. (2005). Modeling of rotary desiccant wheels. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 28(12), 1473-1479.
Jia, C. X., Dai, Y. J., Wu, J. Y., & Wang, R. Z. (2006). Analysis on a hybrid desiccant air-conditioning system. Applied Thermal Engineering, 26(17-18), 2393-2400
Maclaine-Cross, I. L. (1974). Theory of Combined Heat and Mass Transfer in Regenerators. Ph. D. Dissertation in Mechanical Engineering Monash University.
Zheng, W., & Worek, W. M. (1993). Numerical simulation of combined heat and mass transfer processes in a rotary dehumidifier. Numerical Heat Transfer, Part A: Applications, 23(2), 211-232.
Xuan, S., & Radermacher, R. (2005, June). Transient simulation for desiccant and enthalpy wheels. In International sorption heat pump conference (pp. 22-24).
Banks, P. J. (1985). Prediction of heat and mass regenerator performance using nonlinear analogy method: Part 1—Basis. Journal of heat transfer, 107(1), 222-229.
Collier, R. K., Cale, T. S., & Lavan, Z. (1986). Advanced desiccant materials assessment. Final report, February 1985-May 1986 (No. PB-87-172805/XAB). Enerscope, Inc., Glendale, AZ (USA)
Mathiprakasam, B., & Lavan, Z. (1980). Performance predictions for adiabatic desiccant dehumidifiers using linear solutions. Journal of Solar Energy Engineering, 102(1), 73-79.
Kays, W. M., & London, A. L. (1984). Compact heat exchangers.